

Ethylene dimerization over NiSO₄ supported on Fe₂O₃-promoted ZrO₂ catalyst

Jong Rack Sohn*, Jun Seob Lim

Department of Applied Chemistry, Engineering College, Kyungpook National University, Taegu 702-701, Republic of Korea

Available online 9 December 2005

Abstract

The NiSO₄ supported on Fe₂O₃-promoted ZrO₂ catalysts were prepared by the impregnation method. Fe₂O₃-promoted ZrO₂ was prepared by the coprecipitation method using a mixed aqueous solution of zirconium oxychloride and iron nitrate solution followed by adding an aqueous ammonia solution. No diffraction line of nickel sulfate was observed up to 20 wt.%, indicating good dispersion of nickel sulfate on the surface of Fe₂O₃–ZrO₂. The addition of nickel sulfate (or Fe₂O₃) to ZrO₂ shifted the phase transition of ZrO₂ (from amorphous to tetragonal) to higher temperatures because of the interaction between nickel sulfate (or Fe₂O₃) and ZrO₂. 15-NiSO₄/5-Fe₂O₃–ZrO₂ containing 15 wt.% NiSO₄ and 5 mol% Fe₂O₃, and calcined at 500 °C exhibited a maximum catalytic activity for ethylene dimerization. NiSO₄/Fe₂O₃–ZrO₂ catalysts was very effective for ethylene dimerization even at room temperature, but Fe₂O₃–ZrO₂ without NiSO₄ did not exhibit any catalytic activity at all. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The addition of Fe₂O₃ up to 5 mol% enhanced the acidity, surface area, thermal property, and catalytic activities of catalysts gradually, due to the interaction between Fe₂O₃ and ZrO₂ and due to consequent formation of Fe–O–Zr bond.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Fe₂O₃-promoted NiSO₄ catalyst; Phase transition of ZrO₂; Acidic properties; Ethylene dimerization

1. Introduction

The dimerization of alkenes is an important method for the production of higher olefins which find extensive application as industrial intermediate. A considerable number of papers have dealt with the problem of nickel-containing catalysts for ethylene dimerization [1–11]. One of the remarkable features of this catalyst system is its activity in relation to a series of n-olefins. In contrast to usual acid-type catalysts, nickel oxide on silica or silica—alumina shows a higher activity for a lower olefin dimerization, particularly for ethylene [1–6,12]. It has been suggested that the active site for dimerization is formed by an interaction of a low-valent nickel ion with an acid site [9,13]. It has been reported that the dimerization activities of such catalysts are related to the acidic properties of surface and low-valent nickel ions. In fact, nickel oxide, which is active for C_2H_4 — C_2D_4 equilibration, acquires an activity for ethylene

dimerization upon addition of nickel sulfate, which is known to be an acid [14]. A transition metal can also be supported on zeolite in the state of a cation or a finely dispersed metal. Transition metal ions like Ni⁺ or Pd⁺ can be active sites in catalytic reactions such as ethylene and propylene dimerization as well as acetylene cyclomerization [15–17].

The previous papers from this laboratory have shown that NiO-TiO₂ and NiO-ZrO₂ modified with sulfate or tungstate ions are very active for ethylene dimerization [6,18–20]. High catalytic activities in the reactions were attributed to the enhanced acidic properties of the modified catalysts, which originated from the inductive effect of S=O or W=O bonds of the complex formed by the interaction of oxides with sulfate or tungstate ions. However, catalytic functions have been improved by loading additional components. Sulfated zirconia incorporating Fe and Mn has been shown to be highly active for butane isomerization, catalyzing the reaction even at room temperature [21,22]. The promotion in activity of catalyst has been confirmed by several other research group [23–25]. Coelho et al. have discovered that the addition of Ni to sulfated zirconia causes an activity enhancement comparable to that

^{*} Corresponding author. Tel.: +82 53 950 5585; fax: +82 53 950 6594. E-mail address: jrsohn@knu.ac.kr (J.R. Sohn).

caused the addition of Fe and Mn [26]. It has been reported by several workers that the addition of platinum to zirconia modified by sulfate ions enhances catalytic activity in the skeletal isomerization of alkanes without deactivation when the reaction is carried out in the presence of hydrogen [27–29]. Recently, it has been found that a main group element Al can also promote the catalytic activity and stability of sulfated zirconia for *n*-butane isomerization [30–32].

Many metal sulfates generate fairly large amounts of acid sites of moderate or strong strength on their surfaces when they are calcined at 400–700 °C [33,34]. The acidic property of metal sulfate often gives high selectivity for diversified reactions such as hydration, polymerization, alkylation, cracking, and isomerization. However, structural and physicochemical properties of supported metal sulfates are considered to be in different states compared with bulk metal sulfates because of their interaction with supports [9,10,35]. Our previous work has shown that NiSO₄ supported on ZrO₂ is active for ethylene dimerization [36]. As an extension of the study on the ethylene dimerization, we prepared a new catalyst of NiSO₄/Fe₂O₃–ZrO₂ and the promoting effect of Fe₂O₃ on catalytic activity was studied.

2. Experimental

2.1. Catalyst preparation

The Fe₂O₃–ZrO₂ mixed oxide was prepared by a coprecipitation method using aqueous ammonia as the precipitation reagent. The coprecipitate of Fe(OH)₃–Zr(OH)₄ was obtained by adding aqueous ammonia slowly into a mixed aqueous solution of iron nitrate and zirconium oxychloride (Junsei Chemical Co.) at room temperature with stirring until the pH of the mother liquor reached about 8. Catalysts containing various nickel sulfate contents were prepared by the impregnation of Fe(OH)₃–Zr(OH)₄ powder with an aqueous solution of NiSO₄, followed by calcining at different temperatures for 1.5 h in air. This series of catalysts is denoted by the mole percentage of Fe₂O₃ and the weight percentage of nickel sulfate. For example, 15-NiSO₄/5-Fe₂O₃–ZrO₂ indicates the catalyst containing 5 mol% of Fe₂O₃ and 15 wt.% of NiSO₄.

2.2. Procedure

FT-IR spectra were obtained in a heatable gas cell at room temperature using a Mattson Model GL6030E spectrophotometer. The self-supporting catalyst wafers contained about $10~\text{mg cm}^{-2}$. Prior to obtaining the spectra, we heated each sample under vacuum at 25–500 °C for 1 h. Catalysts were checked in order to determine the structure of the prepared catalysts by means of a Philips X'pert-APD X-ray diffractometer, employing Ni-filtered Cu K α radiation. DSC measurements were performed by a PL-STA model 1500H apparatus in air; the heating rate was 5 °C/min. For each experiment 10–15 mg of sample was used.

The specific surface area was determined by applying the BET method to the adsorption of N_2 at $-196\,^{\circ}$ C. Chemisorption

of ammonia was also employed as a measure of the acidity of catalysts. The amount of chemisorption was determined based on the irreversible adsorption of ammonia [20,37,38].

The catalytic activity for ethylene dimerization was determined at $20\,^{\circ}\text{C}$ using a conventional static system following the pressure change from an initial pressure of 290 Torr. A fresh catalyst sample of 0.2 g was used for every run and the catalytic activity was calculated as the initial rate calculated from the initial activity slope. Reaction products were analyzed by gas chromatography with a VZ-7 column at room temperature.

3. Results and discussion

3.1. Infrared spectra

The infrared spectra of 15-NiSO₄/5-Fe₂O₃–ZrO₂ (KBr disc) calcined at different temperatures (400–800 °C) are given in Fig. 1. 15-NiSO₄/5-Fe₂O₃–ZrO₂ calcined up to 700 °C showed infrared absorption bands at 1204, 1133, 1098 and 987 cm⁻¹, which are assigned to bidentate sulfate ions coordinated to the metal such as Zr⁴⁺ or Fe³⁺ [39,40]. The band at 1625 cm⁻¹ is assigned to the deformation vibration mode of the adsorbed water. For 15-NiSO₄/5-Fe₂O₃–ZrO₂ calcined at 700 °C, the band intensities of sulfate ion decreased because of the partial decomposition of sulfate ion. However, for the sample calcined at 800 °C, infrared bands by the sulfate ion disappeared completely due to the decomposition of sulfate ion.

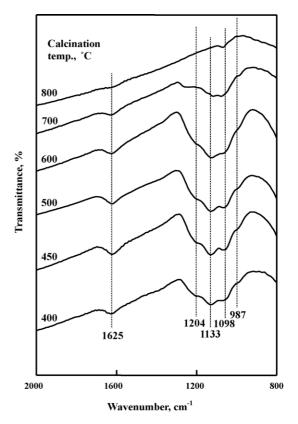


Fig. 1. Infrared spectra of 15-NiSO₄/5-Fe₂O₃–ZrO₂ calcined at different temperatures for 1.5 h.

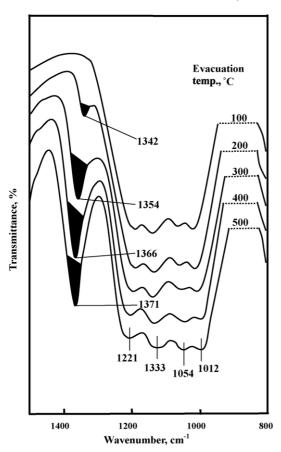


Fig. 2. Infrared spectra of $15\text{-NiSO}_4/5\text{-Fe}_2O_3\text{-ZrO}_2$ evacuated at different temperatures for 1 h.

In general, for the metal oxides modified with sulfate ions followed by evacuation above 400 °C, a strong band [41,42] assigned to S=O stretching frequency is observed at 1390-1360 cm⁻¹. In a separate experiment, the infrared spectrum of self-supported 15-NiSO₄/5-Fe₂O₃-ZrO₂ after evacuation at 100-500 °C for 1 h was examined. As shown in Fig. 2, an intense band at 1342-1371 cm⁻¹ accompanied by four broad but split bands at 1221, 1133, 1054 and 1012 cm⁻¹, indicating the presence of different adsorbed species depending on the treatment conditions of the sulfated sample [43]. At 100 °C an asymmetric stretching band of S=O bonds was not observed because water molecules are adsorbed on the surface of 15- $NiSO_4/5$ - Fe_2O_3 - ZrO_2 [30,44]. At 200 °C the S=O stretching band appeared at 1342 cm⁻¹. The band intensity increased with the evacuation temperature and the position of band shifted to a higher wavenumber. That is, the higher the evacuation temperature, the larger was the shift of the asymmetric stretching frequency of the S=O bonds. It is likely that the surface sulfur complexes formed by the interaction of oxides with sulfate ions in highly active catalysts have a strong tendency to reduce their bond order by the adsorption of basic molecules such as H_2O [30,44]. When the 15-NiSO₄/5-Fe₂O₃-ZrO₂ sample evacuated at 500 °C was exposed to air at 25 °C, the drastic shift of the IR band from 1371 cm⁻¹ to lower wavenumber (not shown due to the overlaps with skeletal vibration band of Fe₂O₃ and ZrO₂) occurred because of the adsorption of water, resulting in the appearance of adsorbed

water band at 1625 cm⁻¹. Consequently, as shown in Fig. 2, an asymmetric stretching band of S=O bonds for the sample evacuated at a lower temperature appears at a lower frequency compared with that for the sample evacuated at higher temperature because the adsorbed water reduces the bond order of S=O from a highly covalent double-bond character to a lesser double-bond character.

3.2. Crystalline structures of catalysts

The crystalline structures of 15-NiSO₄/5-Fe₂O₃–ZrO₂ calcined in air at different temperatures for 1.5 h were checked by X-ray diffraction. In the case of supported nickel sulfate catalysts, the crystalline structures of the samples were different from the structure of the ZrO₂, support. The 15-NiSO₄/5-Fe₂O₃–ZrO₂ materials calcined at different temperatures, as shown in Fig. 3, are amorphous up to 600 °C. In other words, the transition temperature from amorphous to tetragonal phase was higher by 350 °C than that of pure ZrO₂ [36]. X-ray diffraction data indicated only the tetragonal phase of ZrO₂ at 700–800 °C, without detection of orthorhombic NiSO₄ phase. It is assumed that the interaction between NiSO₄ (or Fe₂O₃) and ZrO₂ hinders the phase transition of ZrO₂ from amorphous to tetragonal [30]. For the above Fe₂O₃-promoted catalysts, there

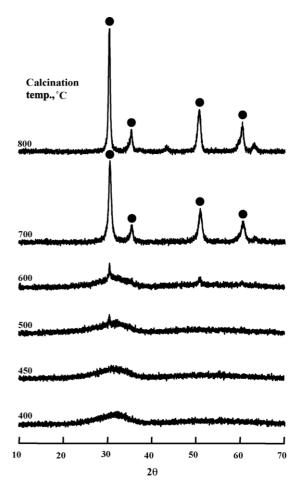


Fig. 3. X-ray diffraction patterns of $15\text{-NiSO}_4/5\text{-Fe}_2O_3$ -ZrO₂ calcined at different temperatures for 1.5 h: (\bullet) tetragonal phase of ZrO₂.

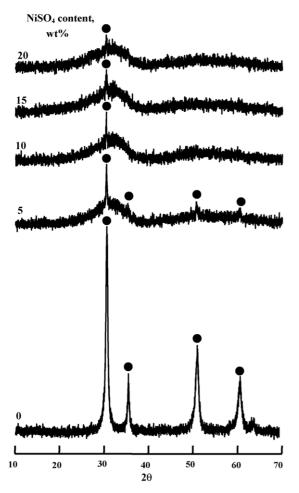


Fig. 4. X-ray diffraction patterns of NiSO₄/5-Fe₂O₃–ZrO₂ containing different NiSO₄ contents and calcined at 500 °C for 1.5 h: (●) tetragonal phase of ZrO₂.

are no characteristic peaks of Fe₂O₃ in the patterns, implying that Fe₂O₃ is sufficiently homogeneously mixed with zirconia.

The XRD patterns of NiSO₄/5-Fe₂O₃–ZrO₂ containing different nickel sulfate contents and calcined at 500 °C for 1.5 h are shown in Fig. 4. XRD data indicated only tiny amount of tetragonal phase of ZrO₂ at the region of 5–20 wt.% of nickel sulfate, indicating good dispersion of NiSO₄ on the surface of 5-Fe₂O₃–ZrO₂. However, the higher the content of NiSO₄, the lower is the amount of tetragonal ZrO₂ phase as in the case of Fe₂O₃ addition described below, because the interaction between nickel sulfate and ZrO₂ hinders the phase transition of ZrO₂ from amorphous to tetragonal in proportion to the nickel sulfate content [40].

The XRD patterns of 15-NiSO₄/Fe₂O₃–ZrO₂ containing different Fe₂O₃ contents and calcined at 500 °C for 1.5 h are shown in Fig. 5. XRD data indicated only the tetragonal phase of ZrO₂ at the region of 0–5 mol% of Fe₂O₃. However, the higher the content of Fe₂O₃, the lower is the amount of tetragonal ZrO₂ phase as in the case of NiSO₄ addition, showing only amorphous phase for the sample above 5 mol% Fe₂O₃, because the interaction between Fe₂O₃ and ZrO₂ hinders the phase transition of ZrO₂ from amorphous to tetragonal in proportion to the Fe₂O₃ content [40]. In this case, no crystalline phase of Fe₂O₃ was observed on the X-ray diffraction patterns.

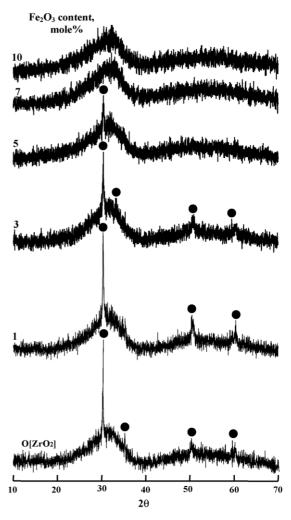


Fig. 5. X-ray diffraction patterns of $15\text{-NiSO}_4/\text{Fe}_2\text{O}_3$ – ZrO_2 containing different Fe_2O_3 contents and calcined at 500 °C for 1.5 h: (\blacksquare) tetragonal phase of ZrO_2 .

3.3. Thermal analysis

The X-ray diffraction patterns in Figs. 3–5 clearly show that the structure of NiSO₄/Fe₂O₃–ZrO₂ is different depending on the calcined temperature. To examine the thermal properties of precursors of NiSO₄/Fe₂O₃–ZrO₂ samples more clearly, we completed their thermal analysis; the results are illustrated in Figs. 6 and 7. For pure ZrO₂, the DSC curve shows a broad endothermic peak below 200 °C due to water elimination, and a sharp exothermic peak at 418 °C due to the ZrO₂ crystallization [40]. However, it is of interest to see the influence of Fe₂O₃ on the crystallization of ZrO₂ from amorphous to tetragonal phase. As Fig. 6 shows, the exothermic peak due to the crystallization appears at 418 °C for pure ZrO₂, while for Fe₂O₃–ZrO₂ samples it is shifted to higher temperatures due to the interaction between Fe₂O₃ and ZrO₂. The shift increases with increasing Fe₂O₃ content. Consequently, the exothermic peaks appear at 446 °C for 1-Fe₂O₃-ZrO₂, 465 °C for $3-\text{Fe}_2\text{O}_3-\text{ZrO}_2$, $485\,^{\circ}\text{C}$ for $5-\text{Fe}_2\text{O}_3-\text{ZrO}_2$, $501\,^{\circ}\text{C}$ for $7-\text{C}_3$ Fe₂O₃-ZrO₂, 529 °C for 10-Fe₂O₃-ZrO₂, and 558 °C for 15-Fe₂O₃–ZrO₂.

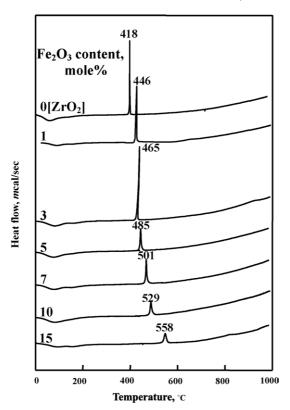


Fig. 6. DSC curves of Fe₂O₃–ZrO₂ precursors containing different Fe₂O₃ contents.

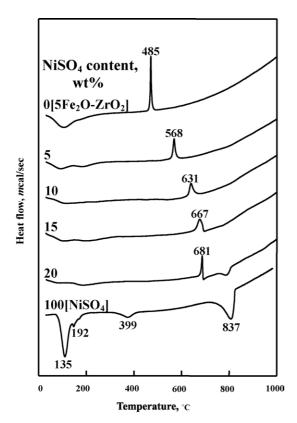


Fig. 7. DSC curves of NiSO $_4$ /5-Fe $_2$ O $_3$ -ZrO $_2$ precursors containing different NiSO $_4$ contents.

However, for NiSO₄/5-Fe₂O₃–ZrO₂ samples containing different NiSO₄ contents, the DSC patterns are somewhat different from that of Fe₂O₃–ZrO₂. As shown in Fig. 7, the exothermic peak for NiSO₄/5-Fe₂O₃–ZrO₂ due to the crystallization of ZrO₂ is shifted to higher temperatures compared with that for 5-Fe₂O₃–ZrO₂ without NiSO₄, indicating that there is an interaction between NiSO₄ and ZrO₂ in addition to the interaction between Fe₂O₃ and ZrO₂. For pure NiSO₄·6H₂O, the DSC curve shows three endothermic peaks below 400 °C due to water elimination, indicating that the dehydration of NiSO₄·6H₂O occurs in three steps. The endothermic peak around 837 °C is due to the evolution of SO₃ decomposed from nickel sulfate [30,44]. Decomposition of nickel sulfate is known to begin at 700 °C [45].

3.4. Surface properties

3.4.1. Specific surface area and acidity

The specific surface areas of samples containing different NiSO₄ contents and calcined at 500 °C for 1.5 h are listed in Table 1. The presence of nickel sulfate and Fe₂O₃ influences the surface area in comparison with that of the pure ZrO₂. Specific surface areas of NiSO₄/5-Fe₂O₃-ZrO₂ samples are larger than that of 5-Fe₂O₃-ZrO₂ calcined at the same temperature, showing that surface area increases gradually with increasing nickel sulfate loading up to 15 wt.%. It seems likely that the interactions between nickel sulfate (or Fe₂O₃) and ZrO₂ prevent catalysts from crystallizing [46]. The decrease of surface area for NiSO₄/5-Fe₂O₃-ZrO₂ samples containing NiSO₄ above 15 wt.% is due to the blocking of ZrO₂ pores by the increased NiSO₄ loading. The acidity of catalysts calcined at 500 °C, as determined by the amount of NH3 irreversibly adsorbed at 230 °C [20,37,38], is also listed in Table 1. The variation of acidity runs parallel to the change of surface area. The acidity increases with increasing nickel sulfate content up to 15 wt.% of NiSO₄. The acidity is correlated with the catalytic activity for the ethylene dimerization discussed below.

3.4.2. Effect of Fe_2O_3 addition on surface properties

We examined the effect of Fe₂O₃ addition on the surface area and acidity of NiSO₄/Fe₂O₃–ZrO₂ samples. The specific surface areas and acidity of 15-NiSO₄/Fe₂O₃–ZrO₂ catalysts containing different Fe₂O₃ contents and calcined at 500 °C are listed in Table 2. Both surface area and acidity increased with increasing Fe₂O₃ content up to 5 mol%, indicating the

Table 1 Surface area and acidity of NiSO₄/5-Fe₂O₃–ZrO₂ catalysts containing different NiSO₄ contents and calcined at 500 $^{\circ}$ C for 1.5 h

NiSO ₄ content (wt.%)	Surface area (m ² /g)	Acidity (µmol/g)
0	81	73
5	109	113
10	123	191
15	168	227
20	130	186
100	30	79

Table 2 Surface area and acidity of 15-NiSO₄/Fe₂O₃–ZrO₂ catalysts containing different Fe₂O₃ contents and calcined at 500 $^{\circ}$ C for 1.5 h

Fe ₂ O ₃ content (mol%)	Surface area (m²/g)	Acidity (µmol/g)
0	86	141
1	131	168
3	147	186
5	168	227
7	156	171
10	143	149

promoting effect of Fe₂O₃ on the catalytic activities for ethylene dimerization described later.

Infrared spectroscopic studies of ammonia adsorbed on solid surfaces have made it possible to distinguish between Brönsted and Lewis acid sites [44,47,48]. Fig. 8 shows the infrared spectra of ammonia adsorbed on 15-NiSO₄/5-Fe₂O₃–ZrO₂ samples evacuated at 500 °C for 1 h. For 15-NiSO₄/5-Fe₂O₃–ZrO₂ the band at 1432 cm⁻¹ is the characteristic peak of ammonium ion, which is formed on the Brönsted acid sites and the absorption peak at 1612 cm⁻¹ is contributed by ammonia coordinately bonded to Lewis acid sites [44,47,48], indicating the presence of both Brönsted and Lewis acid sites on the surface of 15-NiSO₄/5-Fe₂O₃–ZrO₂ samples. Other samples having different nickel sulfate contents also showed the presence of both Lewis and Brönsted acids. As Fig. 8(a) shows,

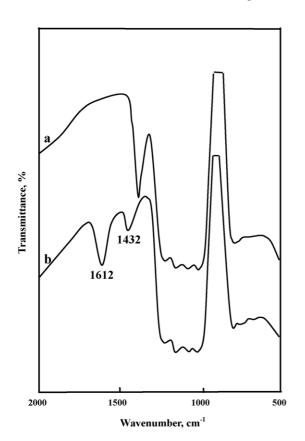


Fig. 8. Infrared spectra of NH $_3$ adsorbed on 15-NiSO $_4$ /5-Fe $_2$ O $_3$ -ZrO $_2$: (a) background of 15-NiSO $_4$ /5-Fe $_2$ O $_3$ -ZrO $_2$ after evacuation at 500 °C for 1 h, (b) NH $_3$ adsorbed on (a), where gas was evacuated at 230 °C for 1 h.

the intense band at $1371~\rm cm^{-1}$ after evacuation at $500~\rm ^{\circ}C$ is assigned to the asymmetric stretching vibration of S=O bonds having a high double-bond nature [42,44]. However, the drastic shift of the infrared band from $1371~\rm cm^{-1}$ to a lower wavenumber (not shown due to the overlaps of skeletal vibration bands of $\rm Fe_2O_3$ – $\rm ZrO_2$) after ammonia adsorption (Fig. 8(b)) indicates a strong interaction between an adsorbed ammonia molecule and the surface complex. Namely, the surface sulfur compound in the highly acidic catalysts has a strong tendency to reduce the bond order of S=O from a highly covalent double-bond character to a lesser double-bond character when a basic ammonia molecule is adsorbed on the catalysts [42,44].

Acids stronger than $H_0 \le -11.93$, which corresponds to the acid strength of 100% H₂SO₄, are superacids [33,42,49,50]. The strong ability of the sulfur complex to accommodate electrons from a basic molecule such as ammonia is a driving force to generate superacidic properties [33,42,51]. NiSO₄/Fe₂O₃–ZrO₂ samples after evacuation at 500 °C for 1 h was also examined by a color change method, using Hammett indicator in sulfuryl chloride [37,52]. The samples were estimated to have $H_0 \le -14.5$, indicating the formation of superacidic sites. Consequently, NiSO₄/Fe₂O₃-ZrO₂ catalysts would be solid superacids, in analogy with the case of metal oxides modified with a sulfate group [20,42,48,53]. This superacidic property is attributable to the double-bond nature of the S=O in the complex formed by the interaction between NiSO₄ and Fe₂O₃–ZrO₂ [9,33,42,53]. In other words, the acid strength of NiSO₄/Fe₂O₃-ZrO₂ becomes stronger by the inductive effect of S=O in the complex.

3.5. Catalytic activities for ethylene dimerization

3.5.1. Ethylene dimerization

NiSO₄/Fe₂O₃-ZrO₂ catalysts were tested for their effectiveness in ethylene dimerization. Over 15-NiSO₄/ZrO₂, 15- $NiSO_4/3$ - Fe_2O_3 - ZrO_2 , and 15- $NiSO_4/5$ - Fe_2O_3 - ZrO_2 , ethylene was continuously consumed, as shown by the results presented in Fig. 9, where catalysts were evacuated at 500 °C for 1 h. Over three catalysts, ethylene was selectively dimerized to *n*-butenes. In the composition of *n*-butenes analyzed by gas chromatography, 1-butene was found to predominate exclusively at the initial reaction time, as compared with cis-butene and trans-butene. This is because the initial product of ethylene dimerization is 1-butene [4,9,48]. Therefore, the initially produced 1-butene is also isomerized to 2-butene during the reaction time [18–20,44]. As shown in Fig. 9, the catalytic activities of 15-NiSO₄/3-Fe₂O₃-ZrO₂ and 15-NiSO₄/5-Fe₂O₃-ZrO₂ are higher than that of 15-NiSO₄/ZrO₂ without Fe₂O₃, showing a clear Fe₂O₃-promoted effect on catalytic activity for ethylene dimerization discussed below.

The catalytic activities of $15\text{-NiSO}_4/5\text{-Fe}_2O_3\text{-}ZrO_2$ were tested as a function of calcination temperature (not shown in the figure). The activities increased with the calcination temperature, reaching a maximum at $500\,^{\circ}\text{C}$, after which the activities

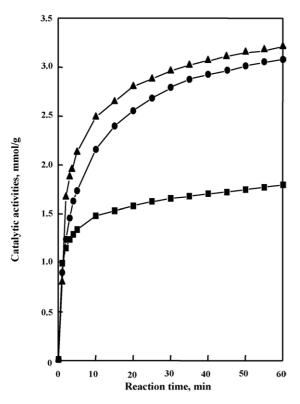


Fig. 9. Time–course of ethylene dimerization over catalysts evacuated at 500 °C for 1 h: (\blacktriangle) 15-NiSO₄/5-Fe₂O₃–ZrO₂; (\blacksquare) 15-NiSO₄/3-Fe₂O₃–ZrO₂; (\blacksquare) 15-NiSO₄/ZrO₂.

decreased. The decrease of catalytic activity after calcination above 500 $^{\circ}\text{C}$ can be probably attributed to the fact that the surface area and acidity above 500 $^{\circ}\text{C}$ decrease with the calcination temperature. Thus, hereafter, emphasis is placed only on the NiSO₄/Fe₂O₃–ZrO₂ samples calcined at 500 $^{\circ}\text{C}$.

3.5.2. Catalytic activity as a function of NiSO₄ content

The catalytic activity of NiSO₄/5-Fe₂O₃-ZrO₂ containing different NiSO₄ contents was examined; the results are shown as a function of NiSO₄ content in Fig. 10. Catalysts were evacuated at 500 °C for 1 h before each reaction. The catalytic activity gives a maximum at 15 wt.% of NiSO₄. This seems to be correlated to the specific surface area and to the acidity of catalysts. The acidity of NiSO₄/5-Fe₂O₃-ZrO₂ calcined at 500 °C was determined by the amount of NH₃ irreversibly adsorbed at 230 °C [20,37,38]. As listed in Table 1, the BET surface area attained a maximum extent when the NiSO₄ content in the catalyst was 15 wt.% and then showed a gradual decrease with increasing NiSO₄ content. In view of Table 1 and Fig. 10, the higher the acidity, the higher the catalytic activity. Good correlations have been found in many cases between the acidity and the catalytic activities of solid acids. For example, the rates of both the catalytic decomposition of cumene and the polymerization of propylene over SiO2-Al2O3 catalysts were found to increase with increasing acid amount at strength $H_0 \le +3.3$ [54]. The catalytic activity of nickel-containing catalysts in ethylene dimerization as well as in butene isomerization is closely correlated with the acidity of the catalyst [4,9,10].

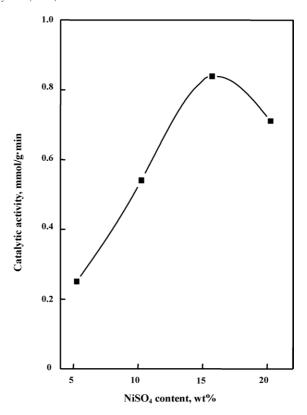


Fig. 10. Catalytic activity of NiSO₄/5-Fe₂O₃–ZrO₂ for ethylene dimerization as a function of NiSO₄ content.

3.5.3. Promoting effect of Fe_2O_3 on catalytic activity

The catalytic activity of $15\text{-NiSO}_4/\text{Fe}_2\text{O}_3\text{-ZrO}_2$ as a function of Fe_2O_3 content for the reaction of ethylene dimerization was examined. Here the catalysts were evacuated at $500\,^{\circ}\text{C}$ for 1 h before reaction; the results are shown in Fig. 11. The catalytic activity increased with increasing the Fe_2O_3 content, reaching a maximum at 5 mol%.

Considering the experimental results of Table 2 and Fig. 11, we think that the catalytic activities for ethylene dimerization are closely related to the changes of surface area and the acidity of catalysts. As listed in Table 2, the total acid sites of 15-NiSO₄/5-Fe₂O₃–ZrO₂ and 15-NiSO₄/ZrO₂ are 227 and 141 µmol/g, respectively, showing that the number of acid sites for the catalyst promoted with Fe₂O₃ is greater than that for non-promoted catalyst. This is consistent with the results reported by Hua et al. [30] over Fe₂O₃-promoted SO₄²⁻/ZrO₂. Fe₂O₃-promoted catalysts could be related to a strong interaction between Fe₂O₃ and ZrO₂. Since the promoting effect of Fe₂O₃ is related to an increase in number of surface acidic sites, it would be of interest to examine various factors influencing the enhancement of these surface acidic sites.

Xia et al. [55] proposed that Fe₂O₃ incorporation in ZrO₂ matrix brought about an increase of the positive partial charge on the Zr cations as a result of the formation of Zr–O–Fe bonds which helped to stabilize the sulfate species at the oxide surface. The formation of Fe–O–Zr bond on the surface of the Fe₂O₃-promoted catalysts is probably the cause for the increase in strong acidic sites. According to the principle of electronegativity equalization proposed by Sanderson [56], since

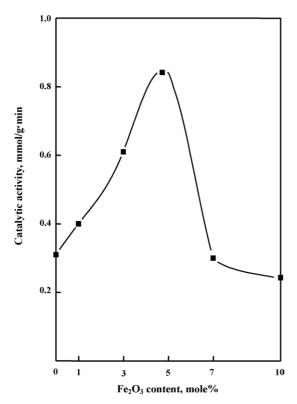


Fig. 11. Catalytic activity of 15-NiSO₄/Fe₂O₃–ZrO₂ for ethylene dimerization as a function of Fe₂O₃ content.

the electronegativity of Fe3+ is larger than that of Zr4+, the positive charge on Zr atom is increased as a result of the formation of Fe-O-Zr bond, which generates stronger acidity on these sites [30]. At the same time, the stronger Fe–O–Zr bond formed by the charge transfer from Zr atom to neighboring Fe atom results in an increase in the thermal stability of the surface sulfate species and consequently the acidity of Fe₂O₃-promoted catalyst is increased. In fact, to examine the thermal stability of the surface sulfate species DSC measurements were carried out. The endothermic peak due to the evolution of SO₃ decomposed from sulfate species bonded to the surface of ZrO₂ appeared at 730 °C [34], while that from sulfate species bonded to the surface of Fe₂O₃-promoted ZrO₂ appeared at 764 °C. Such a temperature difference has been attributed to the stabilizing effect of the Fe₂O₃ promoter on the sulfate species. Namely, the charge transfer from Zr atoms to the neighboring Fe atoms strengthens the Fe-O bond between Fe and the surface sulfate species. The stronger Fe-O bond leads to an increase in the thermal stability of the surface sulfate species and consequently the acidity of the catalysts is increased. A similar result was related by Gao et al. [57] to strong acid sites with differential heat of ammonia adsorption above 140 kJ mol⁻¹.

4. Conclusions

A series of catalysts, NiSO₄/Fe₂O₃–ZrO₂, were prepared by the impregnation method using an aqueous solution of nickel sulfate. The addition of nickel sulfate (or Fe₂O₃) to ZrO₂ shifted the phase transition of ZrO₂ (from amorphous to tetragonal) to

higher temperatures because of the interaction between nickel sulfate (or Fe_2O_3) and ZrO_2 . 15-NiSO₄/Fe₂O₃–ZrO₂ containing 15 wt.% NiSO₄ and 5 mol% Fe_2O_3 , and calcined at 500 °C, exhibited maximum catalytic activities for ethylene dimerization. NiSO₄/Fe₂O₃–ZrO₂ catalysts was very effective for ethylene dimerization even at room temperature, but Fe_2O_3 –ZrO₂ without NiSO₄ did not exhibit any catalytic activity at all. The catalytic activity was correlated with the acidity of catalysts measured by the ammonia chemisorption method. The addition of Fe_2O_3 up to 5 mol% enhanced the acidity, surface area, thermal properties, and catalytic activities of NiSO₄/ Fe_2O_3 –ZrO₂ gradually, due to the interaction between Fe_2O_3 and ZrO_2 and due to consequent formation of Fe–O–Zr bond.

Acknowledgements

This work was supported by grant No. R05-2003-000-100740-0 from the Basic Research Program of the Korea Science and Engineering Foundation. We wish to thank Korea Basic Science Institute (Daegu Branch) for the use of their X-ray diffractometer.

References

- [1] Y.I. Pae, S.H. Lee, J.R. Sohn, Catal. Lett. 99 (2005) 241.
- [2] F. Bernardi, A. Bottoni, I. Rossi, J. Am. Chem. Soc. 120 (1998) 7770.
- [3] J.R. Sohn, A. Ozaki, J. Catal. 59 (1979) 303.
- [4] J.R. Sohn, A. Ozaki, J. Catal. 61 (1980) 291.
- [5] G. Wendt, E. Fritsch, R. Schöllner, H.Z. Siegel, Anorg. Allg. Chem. 467 (1980) 51.
- [6] J.R. Sohn, D.C. Shin, J. Catal. 160 (1996) 314.
- [7] G.F. Berndt, S.J. Thomson, G.J. Webb, J. Chem. Soc., Faraday Trans. 1 79 (1983) 195.
- [8] T.V. Herwijnen, H.V. Doesburg, D.V. Jong, J. Catal. 28 (1973) 391.
- [9] J.R. Sohn, W.C. Park, H.W. Kim, J. Catal. 209 (2002) 69.
- [10] J.R. Sohn, W.C. Park, Bull. Korean Chem. Soc. 21 (2000) 1063.
- [11] K. Urabe, M. Koga, Y. Izumi, J. Chem. Soc., Chem. Commun. (1989) 807.
- [12] G. Wendt, D. Hentschel, J. Finster, R. Schöllner, J. Chem. Soc., Faraday Trans. 1 79 (1983) 2013.
- [13] K. Kimura, A. Ozaki, J. Catal. 3 (1964) 395.
- [14] K. Maruya, A. Ozaki, Bull. Chem. Soc. Jpn. 46 (1973) 351.
- [15] M. Hartmann, A. Pöppl, L. Kevan, J. Phys. Chem. 100 (1996) 9906.
- [16] I.V. Elev, B.N. Shelimov, V.B. Kazansky, J. Catal. 89 (1984) 470.
- [17] H. Choo, L. Kevan, J. Phys. Chem. B 105 (2001) 6353.
- [18] J.R. Sohn, H.J. Kim, J. Catal. 101 (1986) 428.
- [19] J.R. Sohn, S.Y. Lee, Appl. Catal. A: Gen. 164 (1997) 127.
- [20] J.R. Sohn, H.W. Kim, M.Y. Park, E.H. Park, J.T. Kim, S.E. Park, Appl. Catal. 128 (1995) 127.
- [21] C.Y. Hsu, C.R. Heimbuch, C.T. Armes, B.C. Gates, J. Chem. Soc., Chem. Commun. (1992) 1645.
- [22] T.K. Cheung, B.C. Gates, J. Catal. 168 (1997) 522.
- [23] V. Adeeva, H.W. de Haan, J. Janchen, G.D. Lei, V. Schunemann, L.J.M. van de Ven, W.M.H. Sachtler, R.A. van Santen, J. Catal. 151 (1995) 364.
- [24] K.T. Wan, C.B. Khouw, M.E. Davis, J. Catal. 158 (1996) 311.
- [25] X. Song, K.R. Reddy, A. Sayari, J. Catal. 161 (1996) 206.
- [26] M.A. Coelho, D.E. Resasco, E.C. Sikabwe, R.L. White, Catal. Lett. 32 (1995) 253.
- [27] T. Hosoi, T. Shimadzu, S. Ito, S. Baba, H. Takaoka, T. Imai, N. Yokoyama, Prepr. Symp. Div. Petr. Chem., American Chemical Society, Los Angeles, CA, 1988, p. 562.
- [28] K. Ebitani, J. Konishi, H. Hattori, J. Catal. 130 (1991) 257.
- [29] M. Signoretto, F. Pinna, G. Strukul, P. Chies, G. Cerrato, S.D. Ciero, C. Morterra, J. Catal. 167 (1997) 522.

- [30] W. Hua, Y. Xia, Y. Yue, Z. Gao, J. Catal. 196 (2000) 104.
- [31] J.A. Moreno, G. Poncelet, J. Catal. 203 (2001) 153.
- [32] J.R. Sohn, E.S. Cho, Appl. Catal. A: Gen. 282 (2005) 147.
- [33] K. Tanabe, M. Misono, Y. Ono, H. Hattori, New Solid Acids and Bases, Kodansha/Elsevier, Tokyo, 1989, p. 185.
- [34] K. Arata, M. Hino, N. Yamagata, Bull. Chem. Soc. Jpn. 63 (1990) 244.
- [35] J.R. Sohn, E.H. Park, J. Ind. Eng. Chem. 4 (1998) 197.
- [36] J.R. Sohn, W.C. Park, Appl. Catal. A: Gen. 230 (2002) 11.
- [37] J.R. Sohn, S.G. Cho, Y.I. Pae, S. Hayashi, J. Catal. 159 (1996) 170.
- [38] J.R. Sohn, M.Y. Park, J. Ind. Eng. Chem. 4 (1998) 84.
- [39] J.R. Sohn, D.H. Seo, S.H. Lee, J. Ind. Eng. Chem. 10 (2004) 309.
- [40] J.R. Sohn, J.G. Kim, T.D. Kwon, E.H. Park, Langmuir 18 (2002) 1666.
- [41] O. Saur, M. Bensitel, A.B.M. Saad, J.C. Lavalley, C.P. Tripp, B.A. Morrow, J. Catal. 99 (1986) 104.
- [42] T. Yamaguchi, Appl. Catal. 61 (1990) 1.
- [43] B.A. Morrow, R.A. McFarlane, M. Lion, J.C. Lavalley, J. Catal. 107 (1987) 232.

- [44] J.R. Sohn, W.C. Park, Appl. Catal. A: Gen. 239 (2003) 269.
- [45] R.V. Siriwardane, J.A. Poston Jr., E.P. Fisher, M.S. Shen, A.L. Miltz, Appl. Surf. Sci. 152 (1999) 219.
- [46] J.R. Sohn, J. Ind. Eng. Chem. 10 (2004) 1.
- [47] A. Satsuma, A. Hattori, K. Mizutani, A. Furuta, A. Miyamoto, T. Hattori, Y. Murakami, J. Phys. Chem. 92 (1988) 6052.
- [48] J.R. Sohn, S.H. Lee, Appl. Catal. A: Gen. 266 (2004) 89.
- [49] K. Arata, Adv. Catal. 37 (1990) 165.
- [50] F.G.A. Olah, G.K.S. Prakash, J. Sommer, Science 206 (1979) 13.
- [51] J.R. Sohn, E.H. Park, H.W. Kim, J. Ind. Eng. Chem. 5 (1999) 253.
- [52] J.R. Sohn, S.G. Ryu, Langmuir 9 (1993) 126.
- [53] T. Jin, T. Yamaguchi, K. Tananbe, J. Phys. Chem. 90 (1986) 4794.
- [54] K. Tanabe, Solid Acids and Bases, Kodansha, Tokyo, 1970, p. 103.
- [55] Y. Xia, W. Hua, Z. Gao, Appl. Catal. A: Gen. 185 (1999) 293.
- [56] R.T. Sanderson, Chemical Bonds and Bond Energy, Academic Press, New York, 1976, p. 75.
- [57] Z. Gao, Y. Xia, W. Hua, C. Miao, Topics Catal. 6 (1998) 101.